Multivariate Boosting for Integrative Analysis of High-Dimensional Cancer Genomic Data

نویسندگان

  • Lie Xiong
  • Pei-Fen Kuan
  • Jianan Tian
  • Sunduz Keles
  • Sijian Wang
چکیده

In this paper, we propose a novel multivariate component-wise boosting method for fitting multivariate response regression models under the high-dimension, low sample size setting. Our method is motivated by modeling the association among different biological molecules based on multiple types of high-dimensional genomic data. Particularly, we are interested in two applications: studying the influence of DNA copy number alterations on RNA transcript levels and investigating the association between DNA methylation and gene expression. For this purpose, we model the dependence of the RNA expression levels on DNA copy number alterations and the dependence of gene expression on DNA methylation through multivariate regression models and utilize boosting-type method to handle the high dimensionality as well as model the possible nonlinear associations. The performance of the proposed method is demonstrated through simulation studies. Finally, our multivariate boosting method is applied to two breast cancer studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of cancer genomic markers via integrative sparse boosting.

In high-throughput cancer genomic studies, markers identified from the analysis of single data sets often suffer a lack of reproducibility because of the small sample sizes. An ideal solution is to conduct large-scale prospective studies, which are extremely expensive and time consuming. A cost-effective remedy is to pool data from multiple comparable studies and conduct integrative analysis. I...

متن کامل

Identification of breast cancer prognosis markers using integrative sparse boosting.

OBJECTIVES In breast cancer research, it is important to identify genomic markers associated with prognosis. Multiple microarray gene expression profiling studies have been conducted, searching for prognosis markers. Genomic markers identified from the analysis of single datasets often suffer a lack of reproducibility because of small sample sizes. Integrative analysis of data from multiple ind...

متن کامل

Integrative Analyses of Cancer Data: A Review from a Statistical Perspective

It has become increasingly common for large-scale public data repositories and clinical settings to have multiple types of data, including high-dimensional genomics, epigenomics, and proteomics data as well as survival data, measured simultaneously for the same group of biological samples, which provides unprecedented opportunities to understand cancer mechanisms from a more comprehensive scope...

متن کامل

Discovery of multi-dimensional modules by integrative analysis of cancer genomic data

Recent technology has made it possible to simultaneously perform multi-platform genomic profiling (e.g. DNA methylation (DM) and gene expression (GE)) of biological samples, resulting in so-called 'multi-dimensional genomic data'. Such data provide unique opportunities to study the coordination between regulatory mechanisms on multiple levels. However, integrative analysis of multi-dimensional ...

متن کامل

Complementary and Integrative Medicines Used by Cancer Patients to Cope With Chemotherapy-Related Taste Alterations

Introduction: Cancer is a global health problem. Taste change is one of the most common symptoms in cancer patients undergoing chemotherapy. Cancer patients often use Complementary and Integrative Medicine (CIM) to manage chemotherapy complications. Objective: This study aimed to evaluate CIM used by cancer patients to cope with chemotherapy-related taste alterations. Materials and Methods: T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2015